STAY WITH US

[Hindi]NLP 20# Parts of Speech Tagging |NLP|Python 3|Natural Language Processing|2019

[Hindi]NLP 20# Parts of Speech Tagging  |NLP|Python 3|Natural Language Processing|2019


Code:

# -*- coding: utf-8 -*-
"""NLP_Ex13.ipynb

Automatically generated by Colaboratory.

"""
import spacy

nlp = spacy.load('en_core_web_sm')

doc = nlp(u"The quick brown fox jumped over the lazy dog's back.")

print(doc.text)

print(doc[4])

print(doc[4].pos_)

print(doc[4].tag_)

for token in doc:
  print(f"{token.text:{10}} {token.pos_:{10}} {token.tag_:{10}} {spacy.explain(token.tag_)}")

doc = nlp(u"I read books on NLP.")

word = doc[1]

word.text

for token in doc:
  print(f"{token.text:{10}} {token.pos_:{10}} {token.tag_:{10}} {spacy.explain(token.tag_)}")

doc = nlp(u"I read a book on NLP.")

word = doc[1]

for token in doc:
  print(f"{token.text:{10}} {token.pos_:{10}} {token.tag_:{10}} {spacy.explain(token.tag_)}")

doc = nlp(u"The quick brown fox jumped over the lazy dog's back.")

POS_counts = doc.count_by(spacy.attrs.POS)

POS_counts

doc.vocab[84].text

doc[2].pos_

for k,v in sorted(POS_counts.items()):
  print(f"{k} {doc.vocab[k].text:{5}}{v}")

TAG_counts = doc.count_by(spacy.attrs.TAG)

for k,v in sorted(TAG_counts.items()):
  print(f"{k} {doc.vocab[k].text:{5}}{v}")

YouTube:



Recommended Book:

Post a Comment

0 Comments